Geodesy, Mine Survey and Aerial Topography. At the turn of the centuries.

Moscow 14 – 15 February 2013

Mobile LiDAR in Road Surface Quality Control and Renovation

- Latest Development of Terrasolid Software

Hannu Korpela

Road Condition from Mobile LiDAR

Surface

- •Water flow on road surface
- Ruts
- Pot holes
- Cracks
- Paint markings
- Longer depressions
- Superelevation
- Road alignment geometry

Terrasolid

Visibility

- Traffic signs
- Light poles
- Clearance to bridges & wires
- Danger objects next to road
- Room for snow

Example Mobile Road Workflow

- Collect signal markers from laser data and apply fluctuating xyz correction to laser and images
- Collect tie points in signal marker area and solve camera misalignment angles
- Compute depth maps using laser data close in time
- Collect **Depth** tie points on paint markings seen by multiple drive passes (about 25 m spacing)
- Solve and apply fluctuating xyz correction matching drive passes to each other
- Search flat ground tie lines (about 2 m spacing)
- Solve and apply fluctuating z correction matching drive passes to each other

=>TO GET VERY ACCURATE DATA TO MAKE QUALITY

Need of Control Measurement

Test Results

Control spacing	100 m	200 m	500 m
Z average magnitude	0.003 m	0.005 m	0.025 m
Z standard deviation	0.005 m	0.007 m	0.019 m
XY average magnitude	0.013 m	0.018 m	0.024 m

Recommendation for high accuracy work:

- Elevation control at 50m spacing and xy control at 250 m spacing
- Measure elevation control points at 50m spacing on both sides of the road using leveling instrument for elevation and GPS/total station for xy
- Place every 5th on a paint marking corner or paint your own signal

Calibration by Control Points

Control Point versus LiDAR

Positional Correction from LiDAR

Positional accuracy of picking intensity features from laser data is limited by laser point density

Positional Correction from Images

- Find Tie Line Fluctuations supports using image tie points as observations
- Makes it possible to match mobile drive passes to each other more precisely in xy
 - Positional accuracy of picking intensity features from laser data is limited by laser point density
 - Images provide higher resolution data on paint markings

Depth Maps

Software calculates the distance, how far each image can see
Requires classified laser points (ground, high vegetation, buildings)
Red: closest targets; blue: the farthest ; black no information
Software uses Depth Maps to get xyZ position to each pixel of images

What can we extract from mobile laser data + images?

Demonstration of new features:

- Draw slope arrows
- Display road drainage
- Search road geometry components
- Design new asphalt surface

Ruts & Pot Holes

- Detection of ruts and pot holes on the road surface
- Measurement of rut depth and surface area

Superelevation

 Software can automatically label side and longitudinal slope angles along the road

Water Flow on Road Surface

- High density of mobile laser data makes it possible to analyze water flow on the road surface at fine level of detail
- Image below shows road surface colored by slope:
 - Red is less than 1% total slope
 - Yellow is 1 2% total slope
 - Green is 2 4% total slope
 - Blue is 4 20% total slope

Road Design

Horizontal Geometry Lines Circular arcs R +109.52180.00 180.00 A=+95.17 R=:250.00 R=-250.00 +92.96

Transition curve

Vertical Geometry

Geometry Components

Local or national guidelines

- Minimum radius based on the speed and road type
 - for horizontal and vertical geometries
- Sight distances

(Inspection of designs and construction)

Finnish transport agency guidelines for horizontal geometry

Speed (km/h)	Min.radius (m)	Recommended (m)
60	170	250-500
70	250	350-700
80	350	500-1000

for vertical geometry

Speed	Min. radiu	(m) Recommended: Sag Crest (m)	
(km/h)	Crest	Sag	Crest (m)
60	1500	1500	1500-2500
70	2400	2100	2400-4100
80	3900	2800	3900-6500

Road Alignment Geometry

- Component fitting tools find design geometry built from lines, arcs and clothoids which best match surveyed alignment of a road or a railroad
- Fitting for both horizontal and vertical geometry
- Goals:
 - View current geometry of road/railroad/pipeline in design software such as Bentley InRoads, Bentley Track etc passing geometry in LandXML or Tekla 11/12 format
 - Find long span deformations
 - Compare components with design recommendations

List	of road	d segment	S						
le	10015	Otation	T	Della		L'anna an La			4
In	dex	Station	туре	Radius	Cloth. A	Length	Avg.error	wx.error	Modify
	27	2856.91	Clothoid	-290.00	111.73	43.05	0.0730	0.2622	-
	28	2899.95	Line			86.02	0.0243	0.0496	Join
	29	2985.97	Clothoid	0.00	114.72	71.13	0.0196	0.0624	
	30	3057.10	Arc	185.00		86.95	0.0648	0.1864	Undo
	31	3144.06	Clothoid	185.00	89.22	42.89	0.0887	0.1389	Change
	32	3186.95	Line			124.68	0.0725	0.1867	Change
	33	3311.62	Clothoid	0.00	77.89	10.91	0.0837	0.1395	Refit
	34	3322.54	Arc	556.00		49.06	0.0732	0.1692	Tront
	35	3371.60	Clothoid	556.00	200.98	72.65	0.1372	0.2100	
	36	3444.24	Line			5.80	0.1042	0.1529 -	

Geometry Components from Survey

- Maintenance
 - Finding long deformations
 - New surface design
- Identifying hidden safety issues
- Connecting new designs to old

TerraScan Component Fitting 🗾

- Creation of preliminary alignments
- Modification: joining, changing and refitting
- Continuity preserved

Goal: Starting point for a design software with information on the quality.

TerraScan Component Fitting 🖪

A survey vector

- Road features (e.g. center line)
- Rails
- Vehicle trajectory

compared to reasonable components.

TerraScan Component Fitting 🔄

From a survey vector

- Road features (e.g. center line)
- Rails
- Vehicle trajectory

to geometry components for design software e.g. with LandXML

ile	Survey	Horizontal	Vertical	Regression	Component	Tools Vie	<u>ew</u>		
In	dex	Station	Туре	Radius	Cloth. A	Length	Avg.error	Mx.error	
	30	2352.84	Arc	1500.00		63.35	0.0330	0.0650	
	31	2416.16	Line			50.39	0.0345	0.0461	
	32	2466.48	Arc	-3500.00		92.89	0.0238	0.0564	
	33	2559.31	Line			35.13	0.0283	0.0364	
	34	2594.43	Arc	-4000.00		132.89	0.0247	0.0412	-
	35	2727.31	Line			90.22	0.0183	0.0421	
	36	2817.53	Arc	27000.00		122.85	0.0228	0.0489	
	37	2940.37	Line			86.48	0.0142	0.0270	
	38	3026.85	Arc	-5000.00		189.56	0.0359	0.0886	
	39	3216.35	Line	1779 Star (1979 Star)		69.44	0.0088	0.0202	2

Example Data

• VT6 road improvement – length 22 km

Driven in two directions with Trimble MX8

Purpose:

- design new asphalt surface for the road
- remove ruts
- smoothen vertical geometry
- fix superelevation issues

Example Data

- VT6 road improvement length 22 km
- Starting point valid surface
- Each road component were adjusted one by one to get an optimised solution (mill and fill)
- Follow standards of road geometry
- Deliveries to construction phase: <u>breaklines</u>, visualised 3D models, cross sections

Road Asphalt Milling and Replacing with New Asphalt

"With a model basing re-design and construction we were working in completely different planet compared earlier ways", Mr. Erkki Tukiainen, the project leader, NCC-Road

Poles etc.

- Detection of poles and placement of 3D vector models matching the measured point cloud
- Not yet implemented

Clearance to Bridges and Wires

 Measure minimum height difference between road surface and various overhead structures

Version 013.xxx

- Computer ID changes in licenses
- Send new computer ID to Terrasolid if using:
 - Server pool licenses (server ID and name)
 - Permanent licenses
- Versions 013.001 and 013.002 will be released next week
- Version 012.099 works with 012.xxx temporary licenses, with 013.xxx server licenses and 013.xxx permanent licenses
- Version 013.001 has identical functionality with last
 012.xxx version

Thank you for your interest to Terrasolid.

For further information:

www.terrasolid.com hannu.korpela@terrasolid.fi

